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Abstract
An overview is given of integrable models of quantum, classical and statistical
mechanics defined as evolution models in wholly discrete (2 + 1)-dimensional
space-time and based on a special type of auxiliary linear problem.
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1. Introduction

The systems we going to talk about are:

• Wholly discrete, i.e. lattice systems.
• Classical, quantum or spin systems.
• The systems may be associated with a discrete time evolution of auxiliary two-dimensional

lattices, or with three-dimensional lattices.

In a two-dimensional world many discrete integrable systems may be formulated in two
ways: firstly—as statistical mechanics systems, where one starts from the local Boltzmann
weights on a 2D lattice, and secondly—as quantum mechanics systems, where one starts from
a definition of a one-dimensional chain, while the second dimension—the discrete time—
appears sometimes when one considers a kind of evolution of the chain.

The second approach is ours. A first step towards a three-dimensional integrable model
in wholly discrete space–time is to look for an appropriate definition of a mapping, associated
with two-dimensional auxiliary lattices. Such mappings would consist of three-dimensional
models.

Below we will formulate several rules, allowing us to define some objects associated
with two-dimensional auxiliary lattices. The main advantage of the method is that everything
follows from just a set of linear equations. The objects we define will allow one to construct
completely integrable models as (2 + 1) quantized evolution systems. The quantization means
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Figure 1. The vth vertex.

that we will deal with the local Weyl algebra, which has a lot of well defined limits and thus
we will obtain a lot of integrable systems.

The reader may find details concerning the systems considered in [15, 17–22].

2. Auxiliary linear problem

The main auxiliary object in our consideration is an arbitrary two-dimensional graph, formed
by oriented straight lines. The elements of the graph are (1) vertices, (2) edges and (3) sites.

Consider an oriented vertex v, surrounded by four sites a, b, c, d as is shown in figure 1.
To each vertex v we assign the local Weyl pair

v : uv wv : uvwv = q wvuv (1)

uv and wv are supposed to be invertible. The Weyl elements for different vertices of a given
graph commute. Also a C numerical parameter κv is assigned to the intersection of two lines,
i.e. at the moment to the same vertex.

To each site s of the graph we assign a site linear variable ϕs, belonging to a formal left
module of all vertex Weyl algebras. For the sites a, b, c, d in figure 1 their linear variables are
ϕa , ϕb, ϕc and ϕd .

Four linear site variables, surrounding the vertex v, are to be combined into the vertex
local linear form

v
def= ϕa + ϕbq

1/2uv + ϕcwv + ϕd κvuvwv. (2)

The linear equation, corresponding to each vertex, is just the following equation for the linear
site variables:

v = 0. (3)

When a graph consists of many vertices, such an equation is to be written for each vertex. So,
in general, for any graph it appears as a set of linear equations for a set of site variables. We
will call the system of equations v = 0 the complete linear system of the graph.

3. R-mapping

The next step is to consider the 2D simplex: a triangle. Three lines may intersect in two
ways—see figure 2. Consider at first the left triangle. There are three vertices, labelled by
v1, v2 and v3, and seven surrounding sites, whose linear variables are shown in figure 2. Three
vertex linear equations in terms of the Weyl elements u1,w1 for the vertex v1 and so on, defined
by (2), (3) and figure 1, form the complete linear system for the left-hand side graph. Due to
this system three linear variables may be expressed via four other ones.
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Figure 2. Two triangles.

Analogously one may write out the complete linear system for the right-hand side graph
of figure 2. This system is to be written in the terms of Weyl elements u′

1,w
′
1 for v′

1, etc., but
the κ parameters for v′

1, v
′
2 and v′

3 are to be the same as for v1, v2 and v3.
The linear variables, surrounding the triangle, are the same in both graphs, except the

internal ones—they are different. The integrability is to be based on the zero curvature
condition. In our case this condition is simply the condition of linear equivalence of the
complete linear systems of the left- and right-hand sides. In the considered case of the triangles,
the left and right systems are to be equivalent after excluding the internal linear variables ϕh
and ϕa .

Proposition 1. The condition of linear equivalence of two triangles has the unique solution:

w′
1 = w2 · �3 w′

2 = �−1
3 · w1 w′

3 = �−1
2 · u−1

1

u′
1 = �−1

2 · w−1
3 u′

2 = �−1
1 · u3 u′

3 = u2 · �1
(4)

where

�1 = u−1
1 · u3 − q1/2 u−1

1 · w1 + κ1 w1 · u−1
2

�2 = κ1

κ2
u−1

2 · w−1
3 +

κ3

κ2
u−1

1 · w−1
2 − q−1/2 κ1 κ3

κ2
u−1

2 · w−1
2

�3 = w1 · w−1
3 − q1/2 u3 · w−1

3 + κ3 w−1
2 · u3.

(5)

Moreover, the mapping uj ,wj �→ u′
j ,w

′
j is the canonical one with respect to the local Weyl

algebra.

Now we consider the second important object of our exposition: the canonical invertible
mapping R1,2,3, defined as

u′
j = R123ujR

−1
123 w′

j = R123wjR
−1
123 j = 1, 2, 3. (6)

The question about an explicit realization of R123 will be discussed later.
Note that the origin of the mapping R resembles the method of the local Yang–Baxter

equation (LYBE) [12]. LYBE just corresponds to another definition of the equivalence of two
triangles. The reader may find a lot of information concerning several types of this equivalence
in [7–9, 16].

By construction, R mapping concerns the three-dimensional models. This is provided by
the triplet of Weyl algebras, and may be easily visualized if one puts two triangles of figure 2
one above the other and imagines R as a three legged cross formed by the lines from v1 to v′

1,
from v2 to v′

2 and from v3 to v′
3.
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Figure 3. The Kagome lattice.

4. Auxiliary lattices

The concept of the equivalence of several graphs with the same outer structure allows one to
derive unambiguously a mapping, corresponding to any re-gluing of a lattice. In any case, any
complicated mapping may be decomposed into a set of primary mappings R. The sequence
of a decomposition is not essential, because any mapping is defined by the linear equivalence,
and the equivalence condition has an unique solution—thus, all questions concerning, say, the
tetrahedron equation do not arise at all.

A model may now be defined by the form and shape of the auxiliary lattice. Here we will
deal mainly with the evolution on the Kagome lattice, but it is helpful to mention other lattices.

4.1. Kagome lattice

This is shown in figure 3. It is supposed that this lattice is drawn on a torus. Let p be an
element of two-dimensional vector space, ZA × ZB , spanned by vectors a and b (c ≡ a + b).
We will use these vectors to mark out similar triangles of the Kagome lattice, see figure 3. It
is implied that A and B are the spatial sizes of the lattice. Primary dynamical variables of the
system are the set1 of{

uj,p,wj,p

}
j = 1, 2, 3 p ∈ ZA × ZB. (7)

Indices j = 1, 2, 3 marks the vertices of the pth triangle, see figure 3 again. The one step
evolution mapping corresponds to the simultaneous shift of all inclined lines to the north-east
through the vertices of the type 1. After such a shift the structure of the lattice is restored
completely, especially in the case when the κ parameters depend only on a type of vertex, 1,

1 We shall use the notation {, } to denote a set of something.
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Figure 4. The square lattice.

2 or 3. One step evolution is the mapping U , defined by

Uu1,pU
−1 = (

u′
1

)
p

Uw1,pU
−1 = (

w′
1

)
p

Uu2,pU
−1 = (

u′
2

)
p−a Uw2,pU

−1 = (
w′

2

)
p−a

Uu3,pU
−1 = (

u′
3

)
p−b Uw3,pU

−1 = (
w′

3

)
p−b .

(8)

Primed operators are given by the local formulae (4) and (5), and subscripts p, p− a or p− b
are to be added to each uj , wj of (4) and (5). Note again that κj,p = κj . The discrete time
may now be defined simply as

uj,p,t = U t uj,p U−t wj,p,t = U t wj,p U−t . (9)

Geometrically, the Kagome lattice appears as the section of the simple cubic lattice
produced by a completely inclined plane. The one step evolution operator is formed by the
vertices of the cubic lattice (i.e. by R), situated between two adjacent inclined planes.

4.2. Other auxiliary lattices

Of all the other possible auxiliary lattices we will mention only two. The first one is the square
lattice with one additional line, as is shown in figure 4. The square is the upper right part of
figure 4. For this lattice we do not impose a toroidal boundary condition at the moment. The
re-gluing is the pass of the additional line (this curved line is the left lowermost one) through
all the vertices of the square part (so that it will become the right uppermost curved line). The
corresponding mapping is a kind of monodromy operator. Taking a trace of the monodromy
operator with respect to the Weyl algebras, corresponding to all vertices of the additional line,
one obtains an object, defined on the square lattice with the toroidal boundary conditions. This
traced operator is usually called the ‘quantum transfer matrix’, or ‘Q operator’. The two spatial
sizes of the square lattice are arbitrary. Let them be A and B again. One may show that the
quantum transfer matrix arising after a small modification (connected with the transmutation
of a dimension to a rank) is related to an integrable Uq(ŝlA) chain of length B. In part, when
A = 2, it appears to be the massive sine-Gordon model for arbitrary q, or theN -state integrable



10498 S Sergeev

Figure 5. The ‘spiral’ lattice.

chiral Potts model when qN = 1. For arbitrary A and B, and for qN = 1 and some other
restrictions (we will discuss later), this quantum transfer matrix is the layer-to-layer transfer
matrix for the Zamolodchikov–Bazhanov–Baxter (ZBB) model [1, 2, 14].

The other auxiliary lattice to be mentioned is shown in figure 5. Here it is implied that the
cyclic boundary condition in the bottom to top direction. This means the inclined segments
form one spiral, and the horizontal line intersects this spiral inM points—thisM is the size of
the chain. The additional left line also implies the cylinder boundary condition. The mapping,
corresponding to the pass of the additional line from left to right, is also some monodromy
operator. Taking the trace over the Weyl content of two separated vertices, one gets a ‘quantum
transfer matrix’. One may show that this operator is connected with the Q operator for the
relativistic Toda chain [13].

We give these two examples just to show the variety of all the possible auxiliary two-
dimensional lattices.

5. The determinant

So, we have understood the richness of the variety of possible auxiliary lattices and the richness
of the mappings. A natural question arisen is: why we are considering them?

The answer is: all these mappings are integrable in the usual sense. In all cases, dealing
with an auxiliary lattice with the toroidal boundary conditions, formed by � vertices (and so
by � sites—Euler’s theorem for the torus), one may point out exactly (� + 1) independent
operator-valued polynomials of {uv,wv}, invariant with respect to the evolution operator or
with respect to a ‘quantum transfer matrix’. The number of the integrals of motion is larger
than the dimension of the phase space—this just means the existence of a mass centre.

All the mappings appear as the linear equivalence condition of two sets of linear equations.
It is obvious intuitively: if a system of linear equations may be solved, then any equivalent
system may also be solved (even if the coefficients are not C numbers). This means that the
determinant of the complete linear system is to be an ideal of the mappings.

Consider the complete linear system for any lattice with the toroidal boundary conditions2.
Due to linearity the toroidal boundary conditions for the linear variables ϕs may be written as
the quasiperiodic boundary conditions:

ϕp+Aa = αϕp ϕp+Bb = βϕp α, β ∈ C (10)

for any ϕ. Furthermore, because the noncommutative Weyl elements only meet in the same
v , the operator-valued determinant of the complete linear system is well defined. Due to (10)

2 The reader should keep in mind the case of the Kagome lattice. Moreover, the reader may test all these for the case
of one triangle, A = B = 1, where this case corresponds to one site evolution operator. Note the appearance of a
Hamiltonian of the isolated R.
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it depends on α, β:

J(α, β) = det {v} · N −1. (11)

This normalization factor N is to be chosen so that in the decomposition

J(α, β) =
∑
a,b

αa βb Ja,b (12)

the element J0,0 ≡ 1. In general N may be a monomial over α, β—it depends on the form in
which the linear system has been written. Usually we make Ja,b equal to unity, corresponding
to a corner of the Newton diagram of J(α, β). There exists a nice combinatorial representation
of the generation function, such that Ja,b corresponds to special paths on the auxiliary lattice
with the homotopy class fixed, see [18, 19] for the details. Thus, the following propositions
hold:

Proposition 2. J(α, β) as the function ofα, β is invariant with respect to the quantum mapping
operator (evolution operator U for the Kagome lattice as well as Q matrices for the other
lattices).

Proposition 3. The set of
{
Ja,b

}
contains exactly � + 1 independent integrals of motion.

Proposition 4. The set of
{
Ja,b

}
obeys

Ja,b · Ja′,b′ = qab
′−ba′

Ja′,b′ · Ja,b. (13)

It follows from the last proposition that J0,1 and J1,0 may be interpreted as the mass centre
elements.

6. Well defined regimes

It is not necessary to explain all the disadvantages of the rational mappings of the local Weyl
algebra here. To get the well defined quantum objects, such as R or U , or get a good notion of
the trace, one needs to consider several regimes and specifications of the formal Weyl algebra.

6.1. Classical model

The first and most obvious one is the limit when q1/2 = −1. In this case uv and wv become
the usual classical canonical variables uv and wv with the Poisson braces following from (1):

{ uv , wv }P = uv wv. (14)

We have used the subscript P to distinguish between the notation for a set and the notation
for the Poisson braces. The formulae (8) are a kind of Hamilton equations of motion of the
‘first order in time’. The generating function (11) defines the spectral curve J (α, β) = 0. The
Lagrange equations of motion are more suitable for the classical models. To derive them, one
has to change the frame of references at first. Let the three-dimensional coordinate

p = p1e1 + p2e2 + p3e3 (15)

be identified with (p, t) as

p ≡ (p = p2a + p3b , t = p1 + p2 + p3). (16)

In these coordinates the Legendre transformation is

w1,p ∼ τ3,p+e2

τ3,p
w2,p ∼ τ3,p

τ3,p+e1

w3,p ∼ τ2,p

τ2,p+e1

u1,p ∼ τ2,p

τ2,p+e3

u2,p ∼ τ1,p

τ1,p+e3

u3,p ∼ τ1,p+e2

τ1,p
.

(17)
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The signs ‘∼’ imply the existence of pre-exponents in τα,p. The Lagrangian equations of
motion are the set of three local equations:

r1τ1,p+e2+e3τ2,pτ3,p = τ1,pτ2,p+e3τ3,p+e2 + s2τ1,p+e2τ2,p+e3τ3,p + s−1
3 τ1,p+e3τ2,pτ3,p+e2 (18)

and two other equations may be obtained by the cyclic permutation of the indices 1, 2, 3. The
coefficients rα and sα depend on the pre-exponents previously mentioned. They may be chosen
so that r1 = 1 + s2 + s−1

3 , etc., so that τα,p = 1 solves (18). Equations (18) may be reduced to
the Hirota equation [6] in the limit κ1 � κ2 = κ3 � 1. An interesting feature of (18) is that
they are form-invariant with respect to the cubic group. The permutations of 1, 2, 3 are trivial,
while the reflections act highly nontrivially.

For a given size of the auxiliary lattice τα,p is in general a theta function on the Jacobian
of the spectral curve, so that all the equations (18) hold due to the Fay identity, see [20] for
details. In the infinite volume (18) has the solitonic solutions. Let

Wα(p) = λαe
i (k1p1+k2p2+k3p3) (19)

where

ei k1 = λ1((λ1 − λ3) + s1(λ1 − λ2))

λ2(λ1 − λ3) + s1λ3(λ1 − λ2)
and cyclic permutations. (20)

Next let

d(λ, λ′) =
∣∣∣∣∣∣

1 1 1
λ1 λ2 λ3

λ′
1 λ′

2 λ′
3

∣∣∣∣∣∣ D(λ, λ′) = d(λ, λ′) d(λ−1, λ′−1)

d(λ−1, λ′)d(λ, λ′−1)
. (21)

Then, as an example, a two-solitonic solution is

τα,p = 1 +Wα(p) +W ′
α(p) +D(λ, λ′)Wα(p)W

′
α(p). (22)

For a special class of the initial data the classical evolution (8) may have a simple attractor,
i.e. a point in the space of the dynamical variables3 such that

uj,p,t = uj,p,t+1 wj,p,t = wj,p,t+1. (23)

Besides the simple attractor there exist several periodic attractors, corresponding to an
incomplete factorization of the spectral curve.

6.2. Toda chain-type models

Formulae (4) and (5) admit the limit when uj �→ 1 when q = 1 and some special values of κj
are chosen. w′

j are then expressed via wj only. Consider now the first order of h̄ in q = 1− h̄,
uj = 1 − ih̄pj . Equations (4) and (5) produce some linear mapping pj �→ p′

j . The quantum
operators for such mappings are well defined in terms of pj and wj = exj , [xj ,pj ] = i. The
corresponding models are very close to the Toda chain. This procedure, being applied to the
auxiliary lattice in figure 5, gives the Toda chain exactly.

6.3. Free bosonic model

This is another kind of quasiclassical limit. Consider mapping R in the classical case, and
consider the linear mapping of the differentials{

a = d uj
uj
,a+ = dwj

wj

}
�→

{
a′ = d u′

j

u′
j

,a′+ = dw′
j

w′
j

}
. (24)

3 This point corresponds to a degeneration of the spectral curve into the rational variety, so that the theta functions
become the solitonic expressions. The attractor appears in the limit t �→ +∞ when Ik1 > 0.
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a′ and a′+ are linear functions of a and a′+. Equation (1) provides that this linear mapping
conserves [

aj ,a
+
j

] = 1. (25)

Being applied to the complete Kagome lattice, this scenario produces the free bosonic model,
evolving in the classical field{

uj,p,t , wj,p,t
}
. (26)

The free bosonic model is the simplest bundle over the classical evolution model: the tangent
one. At the attractor (23) the model simplifies significantly: it becomes Bazhanov’s free
bosonic model with Baxter’s partition function [2, 10]. Preliminary calculations show that,
for cyclic attractors, the partition function is off-critical (this is the subject of a separate
investigation). In general, the free bosonic models is the best proving ground for several
statistical mechanics predictions.

6.4. Strongly coupling regime

This regime is a pure quantum mechanical one, see [11]. It is connected with Faddeev’s
dualization [4, 5]. In brief, there exists a universal method to make the evolution operator U

unitary and able to well define the Hilbert space, etc. To do this, one has to consider the pair
ũ, w̃ besides u,w, such that q = eiπτ and q̃ = e−iπ/τ , and when τ = eiθ the dual Weyl pair
is the conjugated primary one. It is expected that all the operators of the dualized mappings
are well defined as are any of their products, the notion of the trace, and so on. This statement,
however, is to be proved in a separate investigation.

6.5. Root of unity

The most interesting regime is qN = 1. In this case the Weyl algebra has the natural centres
uN and wN . When they are numbers, the N -dimensional representation of the Weyl algebra
arises. It is interesting to check, due to (4) and (5), that u′N

j and w′N
j are expressed via uNj ,

wN
j and κNj by the classical formulae. Thus any mapping splits into two parts [3]: the first one

is a matrix part, responsible for a changing of the matrix structure of uv,wv , and the second
one is the classical part, responsible for the changing of the centres uNv ,w

N
v . Thus one may

talk about another kind of a bundle: the base is the set of uNv ,w
N
v , while the typical layer is an

element ofN�-dimensional Hilbert space (� is the number of vertices of the auxiliary lattice).
Note that the observation concerning the classical dynamics of N th powers was made first by
Bazhanov and Reshetikhin [25].

The classical dynamics is known completely. In the attractor (23) the classical part of
the evolution mapping trivializes, and it rests only on the finite-dimensional part. It appears
exactly as the evolution operator for the ZBB spin model, and the matrix elements of R are
given by the R matrix of the ZBB model, see [14]. Attractor conditions (23) at N th powers
are responsible for the high type curves in ZBB, the chiral Potts model, and so on.

Our method provides an universal functional equation for all the models at root of unity, no
matter—on an attractor or in general position, because of the functional equation concerning
the generating function J(α, β). To derive it, look back at the formulation of the linear problem,
equations (2), (3) and (11). For the classical part of the spin system, uNv and wN

v , it also exists
as its own linear problem. Fix it as follows:

Lv
def= 0a −0bεNuNv +0cεNwN

v +0dκ
N
v uNv wN

v = 0 (27)
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where εN = (−)N−1. The boundary conditions for0 are0p+Aa = αN0p and0p+Bb = βN0p:
compare with (10) for the Kagome lattice. Analogously to (11) we have calculated the
determinant J (αN, βN) of the complete linear system of (27)—it is important to make the
same Ja,b = 1 as previously, see the note right after equation (12).

Proposition 5. For any auxiliary lattice with the toroidal boundary conditions

det J(α, β) = (J (αN, βN))N�−1

(28)

where � is the number of vertices of the auxiliary lattice and det J means the determinant of
J over all N�-dimensional Hilbert space.

The reader may find the proof of this proposition in [22]. Equation (28) is indeed the
functional equation. J(α, β) has a commutative subset of�−1 integrals of motion. In a basis
of eigenvectors of this subset det J contains a product over all N�−1 independent eigenvalues
of it, corresponding to the N�−1th power on the right-hand side of (28). Besides this product,
det J contains an N ×N determinant over the non-commutative mass centre pair, so that this
determinant must equal J .

The most visual application of (28) concerns the square A × B lattice with N = 2,
uNv = wN

v = 1 and κv = q−1/2. This case corresponds to the layer-to-layer transfer matrix
of Zamolodchikov’s model in a special regime. Eigenvalues of the commutative subset of J

obey the functional equation:

j (α, β)j (−α,−β) + j (−α, β)j (α,−β) = 2(1 − α2)A(1 − β2)B (29)

where the eigenvalue of the auxiliary transfer matrix j (α, β) is a polynomial of α, β.
It is interesting to discuss a little the role of the functional part of R mapping on N th

powers in the application to non-evolving lattices (square or spiral, for example). On such
lattices there are vertices of only one type, and the Legendre transformation such as (17) implies
only two types of τ functions, depending on a two-dimensional spatial discrete coordinate.
‘Equations of motion’ for these τ functions come from the isospectrality problem for J (and
consequently, for J), and their solutions are the two-dimensional solitons. The functional
part of the quantum transfer matrix (besides the trivial one) is the vertex operator, making the
Bäcklund transformation (all these are discussed in [24]). Amusingly, the finite-dimensional
parts of the nontrivial Q operators give explicitly several constructions for the separation of
variables method. This phenomenon in its simplest case is the subject of a future paper [23].
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